NACHI PROPORTIONAL VALVE DRIVE
 Small Type Multi-function Power Amplifier

SMALL TYPE POWER AMPLIFIER SERIES WITH MULTI-FUNCTION FOR ELECTRO-HYDRAULIC

Features
This compact, multi-function power amplifier uses advanced hybrid integrated circuits (HIC).
Compact design - Less than half the size of previous models
High reliability _ Circuit board configuration eliminates the need for wiring.
Multi-function

- Simultaneous driving of two valves
- Controller with built-in amplifier (EDC-PC6-AWZ-D2-20)
- Dither frequency selection function (From Designs 11, 20)

Specifications

\qquad	EDA-PD1-NWZ-D2-11	EDC-PC6-AWZ-D2-20
Function	Amp Type	Amp/Controller Type
Input type	1 DC inputs	Contacts, 6 inputs, DC 2 inputs
Maximum Output Current	900 mA (20Ω solenoid)	900 mA (20Ω solenoid)
Input voltage	-10 to + 10VDC	0 to +10VDC
Input Impedance	$50 \mathrm{k} \Omega$	$50 \mathrm{k} \Omega$
Externally Set Variable Resistance	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$
Drive Solenoid	SOL a, SOL b	SOL 1, SOL 2
Zero Adjust (NULL)	0 to 900 mA	0 to 900 mA
Gain Adjust (GAIN)	0 to $\frac{900 \mathrm{~mA}}{2.5 \mathrm{~V}}$	0 to $\frac{900 \mathrm{~mA}}{2.5 \mathrm{~V}}$
External power supply	$\begin{aligned} & +5 \mathrm{VDC}(5 \mathrm{~mA}) \\ & -5 \mathrm{VDC}(5 \mathrm{~mA}) \\ & \hline \end{aligned}$	+ 5VDC (10mA)
Time Lag (LAG)	0 to 2sec	0 to 2sec
Dither Frequency (DITHER)	80 to 250 Hz	80 to 250 Hz
Power Supply Voltage	DC24V (DC22 to 30V)	DC24V (DC22 to 30V)
Power Consumption	30VA	60VA
Allowable Ambient Temperature	0 to $50^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$
Temperature Drift	$0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ max.	$0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ max.
Weight	0.3 kg	0.4 kg
Driven Valve	Pressure, flow, direction control valves	Pressure, flow, direction control valves

- Handling

1 When selecting a location, avoid areas subject to high temperatures and high humidity, and select an area where there is little vibration and dust.
2) Use shielded wire for the analog signal and valve output signal wires. See page I-33 for general precautions.

3 The brightness of the LED changes in accordance with the size of the output current.

Explanation of model No.

(1) Amp Type

None	1-rotation adjustor knob
D	3-rotation adjustor knob (1-rotation trimmer for dither)

Z: With case
W: 4-direction valve drive possible
N: Standard type
Number of inputs 1: 1 input
D: Amp DC input
P: Panel type
A: Amp type
ED: Small type, multi-function power amp
(2) Amp/Controller Type

Installation Dimension Drawings

EDA-PD1-NWZ-D2-11

No.	Name	No.	Name
1	Input signal terminal IN1	7	DC24V
2	Input signal terminal COM	8	
3		9	Output terminal to valve
4	External power supply P5	10	SOL b
5	Input signal terminal COM	11	Output terminal to valve
6	External power supply N5	12	SOL a

Block Diagram

- Current is supplied to SOL a when input signal voltage polarity is positive, and to SOL b when negative. Either SOL a or SOL b can be driven at any one time.
- Push-pull drive is also supported.
- To measure current, measure the voltage at SOL a terminal 11 and SOL b terminal 9 , using terminal 5 as reference. The voltage across the 0.5Ω current detection resistor at 1 A is 0.5 V . Use a measurement device with an input impedance of at least $1 \mathrm{M} \Omega$.
-To use SOL a only, connect terminal 1 of the knob to amp terminal 2, use an input voltage range of 0 to 5 V . (ER, ES only)

Application Examples

1Adjusting Push-pull Drive for a Special Proportional Valve (Special Specification Direction Control Valve)
a)Overlap Type Proportional Valve ESD-G01-C5 ${ }_{20}^{10}$-6333D...300mA(Center Current)
b)Zero-Lap Type Proportional Valve ESD-G01-C5 2_{20}^{10}-6586C...200mA(Center Current)

Adjustment Procedure

1) NULL, GAIN, OFFSET, LAG Rotate all seven knobs counterclockwise as far as they will go.
2) Without any connection between terminals (1) and (2), use the OFFSET knob to simultaneously energize SOL a and SOL b as follows.

$$
\left\{\begin{array}{l}
\text { SOL a } 300 \mathrm{~mA}(200 \mathrm{~mA}) \\
\text { SOL b } 300 \mathrm{~mA}(200 \mathrm{~mA})
\end{array}\right.
$$

3) Next, apply +5 V to terminal (1) (connecting (1) and (4), and set the SOL a GAIN knob to the following.

$$
\left\{\begin{array}{l}
\text { SOL a } 850 \mathrm{~mA} \\
\text { SOL b } 300 \mathrm{~mA}
\end{array}\right.
$$

For the SOL b current here, SOL b GAIN should be fully rotated counterclockwise, and its setting should not be changed.
4) Apply -5 V to terminal (1) (connecting (1) and (6), and set the SOL b GAIN knob for the following.

$$
\left\{\begin{array}{lr}
S O L a & 0 \mathrm{~mA} \\
\text { SOL b } 850 \mathrm{~mA}
\end{array}\right.
$$

As shown in the figure to the left, push-pull control aims at increasing response at the zero point by simultaneously energizing both solenoids.

This completes the setting procedure.

- The three LAG and NULL knobs should be left rotated fully counterclockwise. There is no need to change their settings.
- EDA-PD1-NWZ-D2-11 is configured with a feedback system, so it does not have a feedback gain adjustment function. In this case, use EDA-PD1-NWZ-D2-11 in combination with the EA-PD4-D10-*-10 NACHI servo amp.

EDC-PC6-AWZ-D2-20

No.	Name	No.	Name
1	CH 1 select terminal	7	COM
	Input signal terminal	8	External power supply P5
2	CH2 select terminal	9	- DC24V
3	CH3 select terminal	10	
4	CH 4 select terminal	11	Output terminal to valve SOL 2
	Input signal terminal	12	
5	CH5 select terminal	13	Output terminal to valve SOL 1
6	CH6 select terminal	14	

Block Diagram

- Dual simultaneous output to SOL 1 and SOL 2 is supported.
- To measure current, measure the voltage at SOL a terminal 13 and SOL b terminal 1, using terminal 7 as reference. The voltage across the 0.5Ω current detection resistor at 1 A is 0.5 V . Use a measurement device with an input impedance of at least $1 \mathrm{M} \Omega$.

Application Examples

