

SMALL TYPE POWER AMPLIFIER SERIES WITH MULTI-FUNCTION FOR ELECTRO-HYDRAULIC PROPORTIONAL VALVE DRIVE

Small Type Multi-function Power Amplifier

Features

This compact, multi-function power amplifier uses advanced hybrid integrated circuits (HIC).

Compact design — Less than half the size of previous models

High reliability — Circuit board configuration eliminates the need for wiring.

Multi-function · Simultaneous driving of two valves

- · Controller with built-in amplifier (EDC-PC6-AWZ-D2-20)
- · Dither frequency selection function (From Designs 11, 20)

Specifications

Model No.	EDA-PD1-NWZ-D2-11	EDC-PC6-AWZ-D2-20	
Function	Amp Type	Amp/Controller Type	
Input type	1 DC inputs	Contacts, 6 inputs, DC 2 inputs	
Maximum Output Current	900mA (20Ω solenoid)	900mA (20Ω solenoid)	
Input voltage	-10 to + 10VDC	0 to + 10VDC	
Input Impedance	50kΩ	50kΩ	
Externally Set Variable Resistance	10kΩ	10kΩ	
Drive Solenoid	SOL a, SOL b	SOL 1, SOL 2	
Zero Adjust (NULL)	0 to 900mA	0 to 900mA	
Gain Adjust (GAIN)	0 to $\frac{900 \text{mA}}{2.5 \text{V}}$	0 to 900mA 2.5V	
External power supply	+ 5VDC (5mA) - 5VDC (5mA)	+ 5VDC (10mA)	
Time Lag (LAG)	0 to 2sec	0 to 2sec	
Dither Frequency (DITHER)	80 to 250Hz	80 to 250Hz	
Power Supply Voltage	DC24V (DC22 to 30V)	DC24V (DC22 to 30V)	
Power Consumption	30VA	60VA	
Allowable Ambient Temperature	0 to 50°C	0 to 50°C	
Temperature Drift	0.2mA/°C max.	0.2mA/°C max.	
Weight	0.3kg	0.4kg	
Driven Valve	Pressure, flow, direction control valves	Pressure, flow, direction control valves	

Handling

- When selecting a location, avoid areas subject to high temperatures and high humidity, and select an area where there is little vibration and dust.
- 2 Use shielded wire for the analog signal and valve output signal wires. See page I-33 for general precautions.
- 3 The brightness of the LED changes in accordance with the size of the output current.

Installation Dimension Drawings

EDA-PD1-NWZ-D2-11

No.	. Name		Name
1	Input signal terminal IN1	7	- DC24V
2	Input signal terminal COM	8	+
3		9	Output terminal to valve
4	External power supply P5	10	SOL b
5	Input signal terminal COM		Output terminal to valve
6	External power supply N5	12	SOL a

Block Diagram

 Current is supplied to SOL a when input signal voltage polarity is positive, and to SOL b when negative.
Either SOL a or SOL b can be driven at any one time.

4 to \$4.5

- Push-pull drive is also supported.
- •To measure current, measure the voltage at SOL a terminal 11 and SOL b terminal 9, using terminal 5 as reference. The voltage across the 0.5Ω current detection resistor at 1A is 0.5V. Use a measurement device with an input impedance of at least 1MΩ.
- To use SOL a only, connect terminal 1 of the knob to amp terminal 2, use an input voltage range of 0 to 5V. (ER, ES only)

Application Examples

- Adjusting Push-pull Drive for a Special Proportional Valve (Special Specification Direction Control Valve)
 - a)Overlap Type Proportional Valve ESD-G01-C5 $^{10}_{20}$ -6333D...300mA(Center Current)
 - b)Zero-Lap Type Proportional Valve $ESD-G01-C5\frac{10}{20}$ -6586C...200mA(Center Current)

As shown in the figure to the left, push-pull control aims at increasing response at the zero point by simultaneously energizing both solenoids.

Adjustment Procedure

- NULL, GAIN, OFFSET, LAG
 Rotate all seven knobs counter clockwise as far as they will go.
- Without any connection between terminals ① and ②, use the OFF-SET knob to simultaneously energize SOL a and SOL b as follows.

SOL a 300mA (200mA)

3) Next, apply +5V to terminal ① (connecting ① and ④), and set the SOL a GAIN knob to the following.

SOL a 850mA

For the SOL b current here, SOL b GAIN should be fully rotated counterclockwise, and its setting should not be changed.

4) Apply –5V to terminal ① (connecting ① and ⑥), and set the SOL b GAIN knob for the following.

SOL a 0mA

This completes the setting procedure.

- The three LAG and NULL knobs should be left rotated fully counterclockwise. There is no need to change their settings.
- EDA-PD1-NWZ-D2-11 is configured with a feedback system, so it does not have a feedback gain adjustment function. In this case, use EDA-PD1-NWZ-D2-11 in combination with the EA-PD4-D10-*-10 NACHI servo amp.

•To measure current, measure the voltage at SOL a terminal 13 and SOL b terminal 1, using terminal 7 as reference. The voltage across the 0.5Ω current detection resistor at 1A is 0.5V. Use a measurement device with an input impedance of at least $1M\Omega$.

Application Examples

P 5

10 💬 🛨 ⊕l.

- 1) Switch Position
 - CONT
 - **●**3+3

4

5

6

7

8

SET 🖗

NULL

OFFSET #

TOFF

Constant

voltage source

10 day

 Θ

GAIN

PWM-AMP

24V DC (24 to 30V, 2% max. ripple) <2A max. power supply>

11

SOL₂

- 2) Switch Position
 - CONT
 - **●**6+6
- 3) Switch Position
 - •AMP
 - ●3+3

 Simultaneous control using two flow control valves (3-speed)

As shown in the diagram to the left, flow control 1 speed is controlled with CH1 LEVEL when CH1 and CH2 are turned on at the same time.

Next, flow control valve 2 speed is controlled by CH4 LEVEL, and simultaneous control is possible by adjusting flow control valve 1 speed in the same way. 3-speed synchronous control is possible by grouping CH1 through CH3 and CH4 thorough CH6.

 Pressure control valve 6-pressure control

As shown in the diagram to the left, this amplifier can be use as a 6-channel controller for a single pressure control valve.

Minimum pressure at this time is in accordance with the setting of the OFFSET knob. The NULL knob cannot be used to configure settings unless a channel is selected.

2-output amplifier for simultaneous control of load-sensitive system pressure and flow rate

As shown in the diagram to the left, 0 to +5V input and channel CH2 or CH3 input are added together and output to the flow control valve.

Likewise, 0 to +5V and CH5 or CH6 input is added together and output to the pressure control valve.